\(\int \sec ^2(c+d x) \sqrt {a+b \sec (c+d x)} (A+B \sec (c+d x)) \, dx\) [350]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (warning: unable to verify)
   Maple [B] (verified)
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 33, antiderivative size = 314 \[ \int \sec ^2(c+d x) \sqrt {a+b \sec (c+d x)} (A+B \sec (c+d x)) \, dx=-\frac {2 (a-b) \sqrt {a+b} \left (5 a A b-2 a^2 B+9 b^2 B\right ) \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{15 b^3 d}-\frac {2 (a-b) \sqrt {a+b} (5 A b-2 a B-9 b B) \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{15 b^2 d}+\frac {2 (5 A b-2 a B) \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{15 b d}+\frac {2 B (a+b \sec (c+d x))^{3/2} \tan (c+d x)}{5 b d} \]

[Out]

-2/15*(a-b)*(5*A*a*b-2*B*a^2+9*B*b^2)*cot(d*x+c)*EllipticE((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),((a+b)/(a-b))^(1
/2))*(a+b)^(1/2)*(b*(1-sec(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/b^3/d-2/15*(a-b)*(5*A*b-2*B*a-
9*B*b)*cot(d*x+c)*EllipticF((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),((a+b)/(a-b))^(1/2))*(a+b)^(1/2)*(b*(1-sec(d*x+
c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/b^2/d+2/5*B*(a+b*sec(d*x+c))^(3/2)*tan(d*x+c)/b/d+2/15*(5*A*b
-2*B*a)*(a+b*sec(d*x+c))^(1/2)*tan(d*x+c)/b/d

Rubi [A] (verified)

Time = 0.67 (sec) , antiderivative size = 314, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.152, Rules used = {4095, 4087, 4090, 3917, 4089} \[ \int \sec ^2(c+d x) \sqrt {a+b \sec (c+d x)} (A+B \sec (c+d x)) \, dx=-\frac {2 (a-b) \sqrt {a+b} \left (-2 a^2 B+5 a A b+9 b^2 B\right ) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{15 b^3 d}-\frac {2 (a-b) \sqrt {a+b} (-2 a B+5 A b-9 b B) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{15 b^2 d}+\frac {2 (5 A b-2 a B) \tan (c+d x) \sqrt {a+b \sec (c+d x)}}{15 b d}+\frac {2 B \tan (c+d x) (a+b \sec (c+d x))^{3/2}}{5 b d} \]

[In]

Int[Sec[c + d*x]^2*Sqrt[a + b*Sec[c + d*x]]*(A + B*Sec[c + d*x]),x]

[Out]

(-2*(a - b)*Sqrt[a + b]*(5*a*A*b - 2*a^2*B + 9*b^2*B)*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Sec[c + d*x]]/S
qrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(1
5*b^3*d) - (2*(a - b)*Sqrt[a + b]*(5*A*b - 2*a*B - 9*b*B)*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Sec[c + d*x
]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))]
)/(15*b^2*d) + (2*(5*A*b - 2*a*B)*Sqrt[a + b*Sec[c + d*x]]*Tan[c + d*x])/(15*b*d) + (2*B*(a + b*Sec[c + d*x])^
(3/2)*Tan[c + d*x])/(5*b*d)

Rule 3917

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[-2*(Rt[a + b, 2]/(b*
f*Cot[e + f*x]))*Sqrt[(b*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[(-b)*((1 + Csc[e + f*x])/(a - b))]*EllipticF[ArcSin
[Sqrt[a + b*Csc[e + f*x]]/Rt[a + b, 2]], (a + b)/(a - b)], x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 4087

Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))
, x_Symbol] :> Simp[(-B)*Cot[e + f*x]*((a + b*Csc[e + f*x])^m/(f*(m + 1))), x] + Dist[1/(m + 1), Int[Csc[e + f
*x]*(a + b*Csc[e + f*x])^(m - 1)*Simp[b*B*m + a*A*(m + 1) + (a*B*m + A*b*(m + 1))*Csc[e + f*x], x], x], x] /;
FreeQ[{a, b, A, B, e, f}, x] && NeQ[A*b - a*B, 0] && NeQ[a^2 - b^2, 0] && GtQ[m, 0]

Rule 4089

Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)
], x_Symbol] :> Simp[-2*(A*b - a*B)*Rt[a + b*(B/A), 2]*Sqrt[b*((1 - Csc[e + f*x])/(a + b))]*(Sqrt[(-b)*((1 + C
sc[e + f*x])/(a - b))]/(b^2*f*Cot[e + f*x]))*EllipticE[ArcSin[Sqrt[a + b*Csc[e + f*x]]/Rt[a + b*(B/A), 2]], (a
*A + b*B)/(a*A - b*B)], x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[a^2 - b^2, 0] && EqQ[A^2 - B^2, 0]

Rule 4090

Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)
], x_Symbol] :> Dist[A - B, Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] + Dist[B, Int[Csc[e + f*x]*((1 +
 Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]]), x], x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[a^2 - b^2, 0] && NeQ[A
^2 - B^2, 0]

Rule 4095

Int[csc[(e_.) + (f_.)*(x_)]^2*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_
)), x_Symbol] :> Simp[(-B)*Cot[e + f*x]*((a + b*Csc[e + f*x])^(m + 1)/(b*f*(m + 2))), x] + Dist[1/(b*(m + 2)),
 Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^m*Simp[b*B*(m + 1) + (A*b*(m + 2) - a*B)*Csc[e + f*x], x], x], x] /; Fr
eeQ[{a, b, e, f, A, B, m}, x] && NeQ[A*b - a*B, 0] &&  !LtQ[m, -1]

Rubi steps \begin{align*} \text {integral}& = \frac {2 B (a+b \sec (c+d x))^{3/2} \tan (c+d x)}{5 b d}+\frac {2 \int \sec (c+d x) \sqrt {a+b \sec (c+d x)} \left (\frac {3 b B}{2}+\frac {1}{2} (5 A b-2 a B) \sec (c+d x)\right ) \, dx}{5 b} \\ & = \frac {2 (5 A b-2 a B) \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{15 b d}+\frac {2 B (a+b \sec (c+d x))^{3/2} \tan (c+d x)}{5 b d}+\frac {4 \int \frac {\sec (c+d x) \left (\frac {1}{4} b (5 A b+7 a B)+\frac {1}{4} \left (5 a A b-2 a^2 B+9 b^2 B\right ) \sec (c+d x)\right )}{\sqrt {a+b \sec (c+d x)}} \, dx}{15 b} \\ & = \frac {2 (5 A b-2 a B) \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{15 b d}+\frac {2 B (a+b \sec (c+d x))^{3/2} \tan (c+d x)}{5 b d}-\frac {((a-b) (5 A b-2 a B-9 b B)) \int \frac {\sec (c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx}{15 b}+\frac {\left (5 a A b-2 a^2 B+9 b^2 B\right ) \int \frac {\sec (c+d x) (1+\sec (c+d x))}{\sqrt {a+b \sec (c+d x)}} \, dx}{15 b} \\ & = -\frac {2 (a-b) \sqrt {a+b} \left (5 a A b-2 a^2 B+9 b^2 B\right ) \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{15 b^3 d}-\frac {2 (a-b) \sqrt {a+b} (5 A b-2 a B-9 b B) \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{15 b^2 d}+\frac {2 (5 A b-2 a B) \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{15 b d}+\frac {2 B (a+b \sec (c+d x))^{3/2} \tan (c+d x)}{5 b d} \\ \end{align*}

Mathematica [A] (warning: unable to verify)

Time = 15.28 (sec) , antiderivative size = 434, normalized size of antiderivative = 1.38 \[ \int \sec ^2(c+d x) \sqrt {a+b \sec (c+d x)} (A+B \sec (c+d x)) \, dx=\frac {2 \sqrt {\cos ^2\left (\frac {1}{2} (c+d x)\right ) \sec (c+d x)} \sqrt {a+b \sec (c+d x)} \left (2 (a+b) \left (-5 a A b+2 a^2 B-9 b^2 B\right ) \sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}} \sqrt {\frac {b+a \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} E\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {a-b}{a+b}\right )+2 b (a+b) (5 A b-2 a B+9 b B) \sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}} \sqrt {\frac {b+a \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} \operatorname {EllipticF}\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {a-b}{a+b}\right )+\left (-5 a A b+2 a^2 B-9 b^2 B\right ) \cos (c+d x) (b+a \cos (c+d x)) \sec ^2\left (\frac {1}{2} (c+d x)\right ) \tan \left (\frac {1}{2} (c+d x)\right )\right )}{15 b^2 d (b+a \cos (c+d x)) \sqrt {\sec ^2\left (\frac {1}{2} (c+d x)\right )} \sqrt {\sec (c+d x)}}+\frac {\sqrt {a+b \sec (c+d x)} \left (\frac {2 \left (5 a A b-2 a^2 B+9 b^2 B\right ) \sin (c+d x)}{15 b^2}+\frac {2 \sec (c+d x) (5 A b \sin (c+d x)+a B \sin (c+d x))}{15 b}+\frac {2}{5} B \sec (c+d x) \tan (c+d x)\right )}{d} \]

[In]

Integrate[Sec[c + d*x]^2*Sqrt[a + b*Sec[c + d*x]]*(A + B*Sec[c + d*x]),x]

[Out]

(2*Sqrt[Cos[(c + d*x)/2]^2*Sec[c + d*x]]*Sqrt[a + b*Sec[c + d*x]]*(2*(a + b)*(-5*a*A*b + 2*a^2*B - 9*b^2*B)*Sq
rt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticE[ArcSin[T
an[(c + d*x)/2]], (a - b)/(a + b)] + 2*b*(a + b)*(5*A*b - 2*a*B + 9*b*B)*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]
*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticF[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]
+ (-5*a*A*b + 2*a^2*B - 9*b^2*B)*Cos[c + d*x]*(b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2]))/(15*b
^2*d*(b + a*Cos[c + d*x])*Sqrt[Sec[(c + d*x)/2]^2]*Sqrt[Sec[c + d*x]]) + (Sqrt[a + b*Sec[c + d*x]]*((2*(5*a*A*
b - 2*a^2*B + 9*b^2*B)*Sin[c + d*x])/(15*b^2) + (2*Sec[c + d*x]*(5*A*b*Sin[c + d*x] + a*B*Sin[c + d*x]))/(15*b
) + (2*B*Sec[c + d*x]*Tan[c + d*x])/5))/d

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(3106\) vs. \(2(284)=568\).

Time = 26.64 (sec) , antiderivative size = 3107, normalized size of antiderivative = 9.89

method result size
parts \(\text {Expression too large to display}\) \(3107\)
default \(\text {Expression too large to display}\) \(3136\)

[In]

int(sec(d*x+c)^2*(A+B*sec(d*x+c))*(a+b*sec(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

2/3*A/d/b*(a+b*sec(d*x+c))^(1/2)/(b+a*cos(d*x+c))/(cos(d*x+c)+1)*(EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b)
)^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a^2*cos(d*x+c)^2+El
lipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)
/(cos(d*x+c)+1))^(1/2)*a*b*cos(d*x+c)^2-EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos
(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a*b*cos(d*x+c)^2-EllipticF(cot(d*x+c)-csc(d*x
+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*b^2
*cos(d*x+c)^2+2*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))
^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a^2*cos(d*x+c)+2*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))
*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a*b*cos(d*x+c)-2*EllipticF(
cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*
x+c)+1))^(1/2)*a*b*cos(d*x+c)-2*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))
/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*b^2*cos(d*x+c)+(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+
1))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a^2+(1/(a+b)*
(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d
*x+c)+1))^(1/2)*a*b-(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+
b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a*b-(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF(cot
(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*b^2+cos(d*x+c)*sin(d*x+c)*a^2+cos(d*
x+c)*sin(d*x+c)*a*b+2*a*b*sin(d*x+c)+b^2*sin(d*x+c)+b^2*tan(d*x+c))-2/15*B/d/b^2*(a+b*sec(d*x+c))^(1/2)/(b+a*c
os(d*x+c))/(cos(d*x+c)+1)*(-4*a*b^2*sin(d*x+c)+a^2*b*sin(d*x+c)+2*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b)
)^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a^2*b-9*EllipticE(c
ot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x
+c)+1))^(1/2)*a*b^2+2*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*Ellipt
icE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a^3*cos(d*x+c)^2-9*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1
/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*b^3*cos(d*x+c)^2-2*
EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+
c)/(cos(d*x+c)+1))^(1/2)*a^2*b+7*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c)
)/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a*b^2+18*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b
))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*b^3*cos(d*x+c)+4*(
1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+
c),((a-b)/(a+b))^(1/2))*a^3*cos(d*x+c)+9*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*co
s(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*b^3*cos(d*x+c)^2-18*(1/(a+b)*(b+a*cos(d*x+c)
)/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))
*b^3*cos(d*x+c)-9*b^3*sin(d*x+c)-3*tan(d*x+c)*b^3-3*b^3*tan(d*x+c)*sec(d*x+c)-4*a*b^2*tan(d*x+c)+2*a^3*cos(d*x
+c)*sin(d*x+c)-4*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1)
)^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a^2*b*cos(d*x+c)+14*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1
/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a*b^2*cos(d*x+c)-2*Elli
pticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(
cos(d*x+c)+1))^(1/2)*a^2*b*cos(d*x+c)^2+7*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*c
os(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a*b^2*cos(d*x+c)^2+2*(1/(a+b)*(b+a*cos(d*x+
c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2
))*a^2*b*cos(d*x+c)^2-9*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*Elli
pticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a*b^2*cos(d*x+c)^2+4*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1)
)^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a^2*b*cos(d*x+c
)-18*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c)-cs
c(d*x+c),((a-b)/(a+b))^(1/2))*a*b^2*cos(d*x+c)+9*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)
*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*b^3-9*a*b^2*cos(d*x+c)*sin(d*x+c)+2*
EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+
c)/(cos(d*x+c)+1))^(1/2)*a^3-9*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/
(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*b^3-a^2*b*cos(d*x+c)*sin(d*x+c))

Fricas [F]

\[ \int \sec ^2(c+d x) \sqrt {a+b \sec (c+d x)} (A+B \sec (c+d x)) \, dx=\int { {\left (B \sec \left (d x + c\right ) + A\right )} \sqrt {b \sec \left (d x + c\right ) + a} \sec \left (d x + c\right )^{2} \,d x } \]

[In]

integrate(sec(d*x+c)^2*(A+B*sec(d*x+c))*(a+b*sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

integral((B*sec(d*x + c)^3 + A*sec(d*x + c)^2)*sqrt(b*sec(d*x + c) + a), x)

Sympy [F]

\[ \int \sec ^2(c+d x) \sqrt {a+b \sec (c+d x)} (A+B \sec (c+d x)) \, dx=\int \left (A + B \sec {\left (c + d x \right )}\right ) \sqrt {a + b \sec {\left (c + d x \right )}} \sec ^{2}{\left (c + d x \right )}\, dx \]

[In]

integrate(sec(d*x+c)**2*(A+B*sec(d*x+c))*(a+b*sec(d*x+c))**(1/2),x)

[Out]

Integral((A + B*sec(c + d*x))*sqrt(a + b*sec(c + d*x))*sec(c + d*x)**2, x)

Maxima [F]

\[ \int \sec ^2(c+d x) \sqrt {a+b \sec (c+d x)} (A+B \sec (c+d x)) \, dx=\int { {\left (B \sec \left (d x + c\right ) + A\right )} \sqrt {b \sec \left (d x + c\right ) + a} \sec \left (d x + c\right )^{2} \,d x } \]

[In]

integrate(sec(d*x+c)^2*(A+B*sec(d*x+c))*(a+b*sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate((B*sec(d*x + c) + A)*sqrt(b*sec(d*x + c) + a)*sec(d*x + c)^2, x)

Giac [F]

\[ \int \sec ^2(c+d x) \sqrt {a+b \sec (c+d x)} (A+B \sec (c+d x)) \, dx=\int { {\left (B \sec \left (d x + c\right ) + A\right )} \sqrt {b \sec \left (d x + c\right ) + a} \sec \left (d x + c\right )^{2} \,d x } \]

[In]

integrate(sec(d*x+c)^2*(A+B*sec(d*x+c))*(a+b*sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate((B*sec(d*x + c) + A)*sqrt(b*sec(d*x + c) + a)*sec(d*x + c)^2, x)

Mupad [F(-1)]

Timed out. \[ \int \sec ^2(c+d x) \sqrt {a+b \sec (c+d x)} (A+B \sec (c+d x)) \, dx=\int \frac {\left (A+\frac {B}{\cos \left (c+d\,x\right )}\right )\,\sqrt {a+\frac {b}{\cos \left (c+d\,x\right )}}}{{\cos \left (c+d\,x\right )}^2} \,d x \]

[In]

int(((A + B/cos(c + d*x))*(a + b/cos(c + d*x))^(1/2))/cos(c + d*x)^2,x)

[Out]

int(((A + B/cos(c + d*x))*(a + b/cos(c + d*x))^(1/2))/cos(c + d*x)^2, x)